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Magnetic impurity and other ‘pair-breaking’ effects

References: de Gennes Chapter 8; AJL QL section 5.9

One of the most striking experimental facts about (classical) superconductivity is that
while it is rather insensitive to nonmagnetic impurities, even a rather small concentration
of magnetic impurities (i.e., those corresponding to a finite local moment) can lead to
a drastic suppression of Tc or even the complete vanishing of superconductivity. The
basic reason for this and related affects is that such impurities destroy the invariance of
the (conduction-electron) Hamiltonian under time reversal. In the following, we suppose
until further notice that the effect of magnetic impurities is to add to the conduction-
electron Hamiltonian a term of the form

Ĥmag =
∑
m

JmSm · σ(rm) (1)

where σ(r) ≡ σαβψ†α(r)ψβ(r) is the conduction-electron spin density at the point r. The
spins Sm are taken to be classical and random both in orientation and in position (the
orientation being fixed).

In lecture 9 we considered the case of nonmagnetic impurities, and showed that by
pairing time-reversed eigenstates (|n ↑〉, |n̄ ↓〉) of the single-particle Hamiltonian, we
would obtain almost as large an (average) value of the quantity F (r, r) as in the ‘pure’
case. To recapitulate the argument, we write in that case

ΨBCS =
∏
n

(un + vnan↑an̄↓)|vac〉 (2)

and the quantity F (r, r) takes the value

F (r, r) ≡ 〈ψ†↑(r)ψ†↓(r)〉 =
∑
n

unvnφn(r)φn̄(r) (3)

but since φn̄(r) ≡ φ∗n(r) this becomes simply

F (r, r) =
∑
n

unvn|φn(r)|2 (4)

and with an appropriate choice of the parameter unvn (= ∆n/2En) this can be made
approximately as large (or larger) as its value for the pure case. Thus, the pair term in
the potential energy, which for the simple contact potential considered is simply

〈V 〉pair = V0

∫
|F (r)|2dr (5)

is also just as large as in the pure case.
For a system lacking time reversal invariance we cannot repeat this argument, because

in general the eigenstates of the single-particle Hamiltonian no longer occur in pairs
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related by time reversal. We therefore have two obvious choices: (a) pair in eigenstates
of Ĥ0 (which are not in general time-reversed) (b) pair in time reversed states (which are
not in general eigenstates of Ĥ0). Of course, intermediate choices are also possible. We
say that magnetic impurities (and other time-reversal-noninvariant effects) are “pair-
breaking”

Before embarking on a quantitative calculation, let’s try to consider the pros and
cons of choices (a) and (b) qualitatively. If we make choice (a), then from the kind of
general arguments developed in lecture 5 we would expect that the best choice is to
pair eigenstates of Ĥ0 with nearly degenerate energies εn. (These will not of course in
general be eigenstates of spin). Such a choice will lead to a depression of the quantity
F (r, r), which is effectively equivalent to a suppression of the constant V0; since Tc
depends exponentially on V0, we expect it to be strongly depressed (except in very special
circumstances, cf. below). So let’s consider alternative (b)(which is (something like)
what the system actually does, cf. below). We then lose little or nothing on the pairing
contribution to 〈V 〉, but the price is that we increase the kinetic energy; crudely speaking,
we have to start our pairing from a “pseudo-Fermi sea” that is the Fermi sea that would
describe the normal system subject to a Hamiltonian without the magnetic terms. What
does it cost us to create this “pseudo-Fermi sea” from the true normal-groundstate (i.e.,
the groundstate of Ĥ0 including the magnetic impurities)? A back of envelope argument
goes as follows: consider a spin (or more generally time-reversal) eigenstate made up
out of eigenstates of Ĥ0 close to the Fermi energy. Such a state will have a width Γ
(≡ ~/τK , see below) which tends to a constant near εF , i.e., it is made up of a packet
of eigenstates of Ĥ0 which have spread ∼ Γ/2. Thus, to reconstitute a “pseudo-Fermi
sea” out of such spin eigenstates we need to supply an extra energy ∼ Γ/2 times the
number of states involved in the rearrangement, which is ∼ (dn/dε)Γ/2. The total energy
required is thus ∼ 1

4(dn/dε)Γ2 ≡ 1
2N(0)Γ2. On the other hand, the condensation energy

of the superconducting state relative to this “pseudo-Fermi sea” is 1
2N(0))∆2 where

∆ is the energy gap in the material without magnetic impurities. Thus, we expect
superconductivity to become energetically unfavorable even at T = 0 (i.e. Tc → 0)
when Γ ∼ ∆. It is amusing that while the numerical factors in the above argument are
clearly rather arbitrary, the exact criterion for the disappearance of superconductivity
does in fact turn out to be Γ = ∆ (see below). If for an “otherwise pure” material
(i.e. in the absence of nonmagnetic impurities), we introduce the relaxation time τK
against T -violating effects, so that Γ ≡ ~/τK , and the corresponding mean free path
lK ≡ vF τK , and recall the definition of the Pippard coherence length ξ0, this criterion
can be rewritten lK = πξ0.

In the following we are going to make extensive use of the time-reversal operator K̂.
This operator must by definition have the property of reversing both momentum p and
spin σ, i.e.

K̂p̂K̂−1 = − p̂, K̂σK̂−1 = − σ̂. (6)

In the case of a simple scaler wave function ϕ(r), it is clear that K̂ may be chosen to be
simply complex conjugation (Ĉ)

K̂ϕ(r) ≡ ϕ∗(r). ≡ Ĉϕ(r) (7)
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However, in general the eigenfunctions of the single-particle Hamiltonian, which are
what we are going to apply the time-reversal operation to, are not eigenstates of spin,

i.e. they are spinors
(
ϕ↑ (r)

ϕ↓ (r)

)
, and in this case a little more care is needed. A choice

which satisfies (6) is
K̂ = iσ̂yĈ , iσ̂y ≡

(
0 1
−1 0

)
(8)

i.e. explicity,

K̂
(
ϕ↑ (r)

ϕ↓ (r)

)
≡
(

ϕ∗↓(r)

−ϕ∗↑(r)

)
(9)

It should be emphasized that K̂ is not supposed to act on the localized spins Sm, which
are regarded as fixed throughout the discussion. Thus,

K̂ĤmagK̂
−1 = −Ĥmag (10)

Note also that

ϕ↑(r) (Kϕ(r))↑ − ϕ↓(r) (Kϕ(r))↓ = |ϕ↑(r)|2 + |ϕ↓(r)|2 (11)

so that were we to pair in time-reversed states (i.e. construct the state (
∑

n cna
+
n a

+
n̄ )N/2|vac〉,

where n̄ ≡ Kn) the value of F (r, r) would be essentially the same as in the nonmagnetic
problem, as already mentioned.

Let’s start by generalizing the Cooper problem to the case of pair-breaking. We write
the single-particle terms in the Hamiltonian in the form

Ĥo =
∑
i

Ĥo (p̂i, r̂i, σ̂i) (12)

where
Ĥo(p̂, r̂, σ̂) ≡ p̂2/2m+ U(r̂) + ĤPB − µ (13)

where ĤPB is a “pair-breaking” term; for example, in the case of magnetic impurities it
is given by Ĥmag (eqn. (1)). We define the single-particle eigenfunctions ϕn (in general
spinors) and eigenvalues εn by

Ĥo(p̂, r̂, σ̂)ϕn(r, σ) = εnϕn(r, σ) (14)

(where σ is the spin projection on the z-axis). We construct the “normal groundstate”
of the N-2-particle system in the form

ΨN−2 =
∏

n(εn<0)

a+
n |vac〉 (15)

Now, following Cooper, we consider the “last two” electrons to be excluded from the
Fermi sea (i.e. the states occurring in the product (15)) and interacting by the BCS
potential

V (r) = −Voδ(r) (16)
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with a cutoff εc on the allowed states which is much longer than ∆o, the value of the
binding energy which would have occurred for the original “pure” Cooper problem (i.e.
in the absence of pair-breaking). As in the original problem, we seek the condition for
the occurrence of a bound state of the last two electrons.

Quite generally, we can write any (allowed) state of the two-particle system in the
form

ψ (r1σ1, r2σ2) =
∑
mn

cmn · 2−1/2 (ϕm(r1σ1)ϕn(r2σ2)− ϕm(r2σ2)ϕn(r1σ1)) (17a)

or in a different and more compact notation (for the whole many-body system)

ΨN =
∑
mn

cmna
+
ma

+
nΨN−2 (17b)

with the constraints 0 < εm, εn < εc, cmn = −cnm,
∑

mn |cmn|2 = 1. The single-particle
energy of the state (17a) (or (17b)) is evidently

〈Ho〉 =
∑
mn

|cmn|2 (εm + εn) . (18)

What about the potential energy? With the choice (16) of potential its expectation
value is given by the expression

〈V 〉 = −Vo
∫
dr|F (r, r)|2 (19)

where the quantity F (r, r) is given by

F (r, r) ≡
∑
σ1σ2

ψ(rσ1, rσ2) =
∑
σ

ψ(r, σ,−r,−σ)

= 2−1/2
∑
mn

∑
σ

cmn{ϕm(rσ)ϕn(r,−σ)− (m� n)} (20)

where we used the fact that ψ(r, σ, rσ) ≡ 0, by the Pauli principle.
Now, were our objective simply to maximize |F (r, r2

| and hence −〈V 〉, we could

simply choose the cmn so that
∑

n cmnϕn(r,−σ) = K̂ϕm(r,−σ) ≡ ϕ∗m(r, σ); this is
essentially tactic (b) above. However, by doing this we would risk paying too high a
price in kinetic energy. On the other hand, were we to simply minimize 〈H〉 using
the general form (20) of F (rr), the resulting equation would involve the product of
four single-particle wave functions and be very messy. To get around this difficulty we
proceed as follows: for any given m in expression (20), write

ϕn(r,−σ) ≡ 〈m|K̂|n〉ϕ∗m(r, σ) + ϕ′n(r,−σ) (21)
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with K̂ the time reversal operator as above. Then in view of the randomly oscillating
phase of ϕ′n(r−σ) to ϕm(r, σ) we do not expect any contribution “on average” to F (r, r),
which is therefore given (see eqn. (11)) by

F (r, r) =
∑
mn

cmnKmn

∣∣∣∣∑
σ

ψm(rσ)|2
(
Kmn ≡ 〈m|K̂|n〉

)
(22)

In view of the fact that∫
dr

(∑
σ

|ψi (rσ)|2
)(∑

σ

|ψj(rσ)|2
)
∼= 1/Ω (23)

(Ω = volume of system) we then find from (22) and (19)

〈V 〉 = −Vo
Ω

(∑
mn

cmnKmn

)2

(24)

Combining (18) and (23), subtracting a Lagrange multiplier −E
∑

mn |cmn|2 to ensure
renormalization and minimizing with respect to cmn, we obtain a Schrödinger equation
of the form

(εm + εn − E)cmn =
Vo
Ω
Kmn

∑
m′n′

cm′n′Km′n′ (25)

Then multiplying by Kmn and summing both sides over m and n, we finally obtain an
implicit eigenvalue equation of the form

V −1
o = Ω−1

∑
mn

|Kmn|2

εm + εn − E
(26)

which in the limit of no pair-breaking (each m associated with m̄ such that Kmm̄ =
δmm̄, εm̄ = εm) reduces to the corresponding form in the original Cooper problem, 1 =
Ω−1Vo

∑
k(2εk−Eo)−1 (1.5, p.2), as it of course should.∗ We can use this fact to eliminate

the potential Vo in favor of the eigenvalue Eo of the Cooper problem in the limit of no
pair-breaking. In fact, writing∑

mn

|Kmn|2δ(εn − ε)δ(εn − ε′) ≡ K(ε, ε′) (27)

we have (with the usual assumption of a nearly constant density of single-particle states
near the Fermi energy) ∫ εc

o

∫ εc

o
dε
dε′K(ε, ε′)

ε+ ε′ − E

∫ εc

o

dε

2ε− Eo
(28)

∗Note moreover that “option B” would correspond to taking cmn ∝ Kmn and hence to the replacement
of (εm + εn) in the denominator of (26) by a constant.
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which has the advantage that for “reasonable” choice of K(ε, ε′) the high-energy cutoff
εc drops out of the problem (see below). It is clear that the effect of the pair-breaking
is, qualitatively speaking, to smooth out the singularity which occurs in the integral on
the RHS of eqn. (27) in the limit Eo → 0; thus we may anticipate that for any given
εo, strong enough pair-breaking will eliminate the Cooper brand state. To investigate
this question quantitatively we of course need to know the explicit form of the function
K(ε, ε′); if we anticipate the result, to be established below, that for a wide variety of
problems this form is

K(ε, ε′) =
1

π

Γk
(ε− ε′)2 + Γ2

k

(29)

where ΓK ≡ ~/τK is the inverse of a “pair-breaking time” τK , then (28) can be written
in the form (changing the COM variable ε+ ε′ ≡ ε to 2ε)∫ εc

o

(
2
π tan−1 (2ε/ΓK)

)
dε

2ε− E
=

∫ εc

o

dε

2ε− Eo
(30)

and even without detailed evaluation of the LHS it is clear that E → 0 when Γk is of
the order of Eo, in agreement with the qualitative considerations explored above.

Now let us turn to the real many-body problem. We first note that the obvious
generalization of the particle-conserving version of the BCS ansatz (eqn. (9) of l.5),
namely (apart from renormalization)

ΨN =

(∑
mn

cmna
+
ma

+
n

)N/2
|vac〉 (31)

involves some complications, since unlike in the simple BCS case a given single-particle
state may occur in more than one term in the sum and we then need to take account
of the Pauli principle. However, it turns out that provided we are interested only in the
criterion for the instability of the normal state, these complications go away and we are
left with what is essentially a straight forward extension of the Cooper problem, the
difference with the latter residing mainly in the fact that we need to allow for excitation
of pairs of holes as well as pairs of particles. It turns out that to explore this aspect it is
advantageous to modify the formalism slightly,∗ and to explain this point I now digress
briefly back to the original BCS problem.

In the BCS problem the normal groundstate (Fermi sea, |FS〉) may be written in
the form

|FS〉 =
∏
k<kF

a+
k↑ a

+
−k↓|vac〉 (32)

∗An essentially equivalent approach using the BdG equations is given in deGennes ch.
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In view of this the particle-nonconserving BCS ansatz, which apart from normalization
is

ΨBCS =
∏
k

(1 + cka
+
k↑ a

+
−k↓)|vac〉 (ck ≡ vk/uk) (33)

may be rewritten in the identically equivalent form (again up to normalization)

ΨBCS =
∏
k>kF

(1 + ck a
+
k↑ a

+
−k↓) ·

∏
k<kF

(1 + dk a−k↓ ak↑ |FS〉 (34)

with dk ≡ c−1
k ≡ uk/vk. For pairs in an s-wave state∗ (34) is just a rewriting of (33) in

different notation, and all physical properties predicted by the two forms are identical.
Note that if we insert in (34) the standard forms of uk and vk for the BCS groundstate,
the upper limit on both |ck| and |dk| is 2−1/2.

Now let’s return to the case of real interest, that of pair-breaking. In that case the
natural way to write the normal groundstate |FS〉 is

|FS〉 ≡
∏
εm<0

a+
m|vac〉 (35)

(though of course it would be possible, by “pairing” the occupied states in an arbitrary
way, to write it in a form analogous to (32)). Consider now the (particle-nonconserving)
ansatz analogous to (34):

Ψ =
∏

εm,εn>0

(1 + cmn a
+
m a+

n ) ·
∏

εm,εn<0

(1 + dmn an am)|FS〉 (36)

where we note that there are no terms for which the signs of εn and εm are different.†

Since we are interested only in the criterion for instability of the normal state, and thus
in the limit |cmn|, |dmn| � 1, we may legitimately expand (36) to give

Ψ ∼= (1 +
∑

εm,ε−n>0

cmn a
+
m a+

n ) · (1 +
∏

εm,εn<0

dmnanam) · |FS〉 (37)

We see that up to bilinear order in the c’s and d’s the “Pauli-principle” difficulty men-
tioned above does not affect the results. In fact, let us define the quantity (analyses to
Fk in the BCS case)

Fmn ≡ 〈anam〉 (38)

Then we see that for εm, εn > 0 Fmn evaluated for the state (37) is equal to cmn and for
εm, εn < 0 to d∗mn (for sgn εm 6= sgn εn Fmn is zero). Thus for the (normalized) state
(37) the single-particle energy has the form (cf. eqn. (18))

〈Ho〉 =
∑
mn

(|εm|+ |εn|) |Fmn|2 (39)

∗In the case of l 6= 0 pairing the situation is more complicated, see AJL QL, appendix 6A.
†Any such terms would have to be of the form emna

+
man, and would thus possibly enter the Hartree

and Fock terms in the potential energy (already accounted for in the N state) but not the pairing terms.
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As regards the potential energy (or more precisely the pairing contributions thereto) the
situation is closely analogous to that which we already met in the Cooper problem; as
there, the expression for 〈V 〉 for arbitrary Fmn is

〈V 〉 = −Vo
∫
|F (r, r)|2dr (40)

where now F (r, r) is given by the slightly more general expression

F (r, r) ≡
∑
mn

Fmnϕm(r)ϕn(r) (41)

The considerations concerning the optimum choice of the Fmn are exactly analogous to
those in the Cooper problem, so that we end up with the expression (cf. (24))

〈V 〉 = −Vo|Ψ|2 (42)

Ψ ≡
∑
mn

Kmn Fmn (43)

with as above Kmn the matrix element of the time-reversal operator K̂. Thus, combining
(34) and (42), the expectation value of the complete Hamiltonian Ĥ is

〈Ĥ〉 =
∑
mn

(|εm|+ |εn|) |Fmn|2 − Vo|
∑
mn

Kmn Fmn|2 (44)

and to find the groundstate we must minimize this with respect to the Fmn. However,
in doing so we must bear in mind the constraint that Fmn ≡ 0 when the signs of εm and
εn are different; to implement this constraint it is convenient to define a quantity

Θmn ≡
1

4
(sgn εm + sgn εn)2 (45)

and require that Fmn ∝ Θmn. If now we define a quantity

∆ ≡ −VoΨ ≡ −Vo
∑
mn

Kmn Fmn (46)

we find from the minimization that

Fmn =
∆ ·KmnΘmn

|εm|+ |εn|
(47)

Finally, substituting (47) back into (44), we find that the expectation value 〈Ĥ〉∆ of Ĥ
as a function of ∆ is given by the expression

〈Ĥ〉∆ = ∆2

(∑
mn

|Kmn|2Θmn

|εn|+ |εm|
− V −1

o

)
(48)
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Hence, the criterion for the normal state (∆ = 0) to be unstable against the formation
of Cooper pairs is ∑

mn

|Kmn|2Θmn

|εm|+ |εn|
< V −1

o (49)

or in terms of the function K(ε, ε′) defined by eqn. (27), and assuming as usual that
the single-particle density of states near the Fermi energy can be approximated by a
constant N(0).

Q ≡ 2N(0)

∫ εc

o
dε

∫ εc

o
dε′

K(ε, ε′)

ε+ ε′
< V −1

o (50)

We must now discuss the form of the function K(ε, ε′), which we recall is defined by
(eqn. (27))

K(ε, ε′) ≡
∑
mn

|Kmn|2 δ(ε− εn) δ(ε′ − εm) (51)

We first note a general point: since (51) simply describes properties of the single-particle
states and the Fermi energy εF enters only as a reference energy for ε, there is no
reason for K to depend on the “COM” variable ε+ ε′; thus we can write it in the form
K(ε, ε′) = K(ω), where ω ≡ ε− ε′ and

K(ω) =
∑
n

|Kmn|2 δ(ω − (εn − εm) (52)

Moreover, since K is antiunitary we must have
∑

n |Kmn|2 = 1, i.e.∫ ∞
−∞

K(ω)dω = 1 (53)

A convenient way of evaluating the function K(ω) is to relate it to properties of the
normal phase which, while they may not be calculable a priori, are known experimentally,
and it is often possible to do this. Consider for example the case of magnetic impurities
as described by eqn. (1). As regards its effect on single spins (only!)∗ The time reversal
operator K̂ can be written in the form

K̂ = Ĉ

(
n−1
c

∑
i

(iσyi))

)
= 2n−1

c Ĉ(iŜy) (54)

where Ĉ is the operator of complex conjugation and the factor n−1
c , the total number of

conduction electrons, is introduced so as to satisfy the antiunitarity condition, and Ŝy is
simply the y-component of the total conduction electron spin. Since for the magnetic-
impurity problem Ĉ commutes with the complete Hamiltonian (including Ĥmag) and the
eigenfunctions can always be chosen real (hence satisfying Ĉ = +1), the matrix elements
of K̂ are up to an overall constant exactly those of Ŝy, as that the quantity K(ω) is,

∗In the general case the sum over i should be replaced by a product.
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up to normalization exactly that of the corresponding quantity with K̂ replaced by Ŝy.
But the letter is just the imaginary part of the response function χss(ω) (autocorrelation
function) of Ŝy; and since the behavior of 〈Sy(t)〉 in the magnetic-impurity case is usually
very well described by a simple relaxation equation of the form

d〈Sy(t)〉
dt

= −〈Sy〉
τκ

(55)

with τκ a phenomenological relaxation time which can be read off from experiment, it is
easy to show that Imχss(ω) has a simple Lorentzian (Breit-Wigner) form. Thus, taking
into account the normalization condition (53), we find that the function K(ω) is given
for the magnetic-impurity case by the simple expression

K(ω) =
1

π

ΓK
ω2 + Γ2

K

with ΓK ≡ ~/τs (56)

The form (56) is likely to apply more generally in cases when the relaxation of K̂ is due
to random pair-breaking terms in the Hamiltonian analogous to Ĥmag, but of course in
general Γκ is there not intent to τκ and must be found by other methods.

Thus, in any such case the expression for the quantity ϕ on the LHS of the inequality
(56) is

Q = 2N(0)
1

π

∫ εc

o
dε

∫ εc

o
dε′

ΓK
(ε− ε′)2 + Γ2

K

· 1

ε+ ε′
(57)

Before examining the implications of the zero-temperature result (57), let us generalize
it to nonzero temperatures. The simplest way to do this is probably to represent each
pair of states m, n or by an Anderson pseudospin subject to a “z-component” of field
εm + εn and a transverse field ∆, which as we are interested only in the instability of
the normal phase we shall allow to tend to zero. The quantity ∆ must be determined
self-consistently by the appropriate generalization of eqns. (46) and (47), with Fmn now
representing the quantum-mechanical and thermal expectation value of the quantity
anam. Thus, eqn. (46) is unchanged. However, in considering (47) we need to bear in
mind that the quantum-mechanical expectation value of anam is zero in the broken-pair
states and the negative of its groundstate value in the excited-pair state.; hence the RHS
of eqn. (47) should be multiplied by a factor

pGP − pEP = (1−nm)(1−nn) − nmnn =
1

2
(tanh β|εm|/2+tanh β|εn|/2) ≡ f(εm, εn)

and the combination of (46) and (47) yields the self-consistent equation for ∆ → 0 of
the form ∑

mn

|Kmn|2Θmnf(εm, εn)

|εm|+ |εn|
= V −1

o (58)

Proceeding as in the zero-temperature case and eliminating V −1
0 in favor of the non-

pairbreaking transition temperature Tco ≡ kBβ
−1
c0 , we finally arrive at the fundamental
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result

1

π

∫ εc

0
dε

∫ εc

0
dε′

(tanh(βcε/2) + tanhβcε
′/2)

ε+ ε′
ΓK

(ε− ε′)2 + Γ2
K

=

∫ εc

0

(tanh(βc0ε/2))dε

ε
(59)

In the limit Γκ → 0 the Lorentzian factor reduces to πδ(ε−ε′), so the LHS reduces to the
RHS if we put βc = βc0. Also, in the limit βc →∞ eqn. (59) reduces to the combination
of (54) and (57), which using the zero-T nonpairbreaking gap equation can be written

2

π

∫ εc

0
dε

∫ εc

0
dε′

Γ
(c)
K

(ε− ε′)2 + Γ
2(c)
K

1

ε+ ε′
= ln2εc/∆0 (60)

It is evident without detailed evaluation of the RHS of (60) the critical value Γ
(c)
K of Γk

defined by (60) is some numerical constant times ∆0, in agreement with our original
intuitive argument. More generally, by rescaling the integration variables by a factor of
βc0 we see that βc0/βc can be a function only of the ratio ΓK/∆o (or ΓK/kBTc0)

In the literature it is conventional to write the result (59) in the less intuitive form

ln(Tc0/Tc) = ψ

(
1

2
+

ΓK
2πkBTc

)
− ψ

(
1

2

)
(61)

where ψ(z) is the so-called digamma function Γ′(z)/Γ(z) (here (Γ(z) (no relation to
ΓK !) is the Euler Γ-function). Detailed study of this equation shows that the critical

depairing note Γ
(c)
K for superconductivity to disappear altogether (i.e. Tc → 0) is in fact

numerically equal∗ to the nonpairbreaking gap ∆0.
The general behavior of Tc as a function of ΓK is

as shown. For small impurity concentration the slope
is given approximately by kB(Tc0 − Tc) ∼= RπΓ/K . The
region just below the N-S transition temperature which
is shaded in the figure is very interesting. As shown
by Abrikosov and Gor’kov in their original paper, in
this regime that superconductor is gapless, that is, there
exist Bogoliubov quasiparticles of arbitrarily low energy.
I follow the discussion of de Gennes (Section 8.2):

Consider for definiteness the case T = 0, but with
a concentration of impurities close to critical; then we
may reasonably assume that the “gap” ∆ is small, and
work as above to lowest order in it. To order |∆|2 we
have for the energy eigenvalues

En = |εn|+ |∆|2
∑
m

|〈n|K|m〉|2

|εn|+ |εm|
, (62)

∗This result may be obtained directly from eqn. (60) by integrating over (ε+ ε′), integrating by parts
and noting the easily found result

∫∞
o

lnz
1+z2

dz = 0
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If the one-electron part of the Hamiltonian is invariant under time reversal, then the
only state m occuring in the sum is degenerate with εn, so that

En = |εn|+ |∆|2/(2|εn|) (63)

This is the beginning of an expansion in ∆/|εn|: it clearly works for |εn| → ∞ but
fails for |εn| → 0. If the system is not invariant under K, then the second term is not
singular as |εn| → 0 and the perturbation theory may work. Suppose in particular K
relaxes exponentially to zero with time constant τK = Γ−1

K , then

En = |εn|+ |∆|2
∫
dε′ ImχK(εn − ε′)/(εn + ε′) (64)

= |εn|+ |∆|2
∫

dε′
ΓK

(εn − ε′|)2 + Γ2
K

= |εn|+
|∆|2 |εn|
ε2n + (Γ2

K)

If now we take |εn| � ΓK , this tends to

En = |εn|(1 +
1

2
(∆/ΓK)2) (65)

which can be arbitrarily small. The density of states is

Ns(ε) = N(0)dε/dE ∼=
{

1 +
1

2
∆2 ε

2 − (Γ2
K)

ε2 + (Γ2
K)2

}
(66)

so for ε < ΓK is less than the N-state value but for ε > ~/ΓK greater. [cf. de Gennes
Fig. 8.5.]

The above considerations work for most kinds of pair-breaking effects. However,
we should always bear in mind that solutions we have obtained are at most variational
ansätze, and we cannot exclude that there may exist other solutions which as it were
differ by a finite amount from the simple perturbation-theoretic ones. As an example,
consider the case of a constant finite Zeeman field (assumed to act only on the spins and
not on the orbital degrees of freedom). We could follow through the above calculation,
but now the spectrum of Ŝy and thus of K̂ is a δ-function at ε− ε′ = 2µBH, the energy
necessary to flip a spin. Correspondingly, the zero-T linearized gap equation becomes

(N(0)V0)−1 =

∫ εc

0

dε

ε+ µBH
∼= ln(εc/µBH) (67)

(where in the last equality we assume εc is large). The zero-field T = 0 gap ∆ satisfies
the relation

(N(0)V0)−1 =

∫ εc

0

dε√
ε2 + ∆2

∼= ln(2εc/∆) (68)

and thus the critical field at T = 0 should apparently be given by µBH = ∆/2.
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However, this conclusion is not correct. To see this, let us compare the energies of
the normal state in field H, and the paired state obtained by refusing to let the particles
polarize in the field and then proceeding as if in field 0. Relative to the normal state in
zero field, the first has energy −(1/2)µ2

BH2(dn/dε) = −µ2
BH2N(0), while the second has

energy (cf. Lecture 6) −(1/2)∆2N(0). Thus the second is stable for µBH < ∆/
√

2, i.e.
beyond the limit given by the perturbation calculation. The latter is actually the limit
of metastability of the N phase, i.e. the “supercooling” field; cf. Maki and Tsuneto,
Prog. Theor. Phys. 21, 945 (1964). It is an interesting question whether a similar
situation could ever occur in the magnetic-impurity case.

(A further complication: FFLO state).


